前列腺增强磁共振成像肿瘤的影像组学 良恶性自动判别算法
CSTR:
作者:
作者单位:

(1.福建医科大学附属第二医院,福建 泉州 362000)

作者简介:

郭颖颖,女,住院医师,主要研究方向是肿瘤 MRI 成像技术与诊断。

通讯作者:

中图分类号:

R 737.25;R 445.2

基金项目:


Auto Identifying Algorithm of Benign and Malignant Tumors of Enhanced MRI Radiomics of Prostate
Author:
Affiliation:

(1.The Second Affiliated Hospital of Fujian Medical University, Fujian Quanzhou 362000)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    摘 要目的:运用放射组学从前列腺肿瘤磁共振增强图像中提取高通量的病灶纹理特征,结合套索算法(LASSO) 回归算法进行特征筛选,利用筛选的纹理特征建立前列腺增强磁共振分类模型来自动检测前列腺癌。方法:回顾性分 析经 3.0 T 磁共振成像(MRI)增强扫描的前列腺肿瘤患者 118 例,经病理证实前列腺癌 63 例,前列腺良性肿瘤 55 例, 增强图像在 ITK–SNAP 3.6.0 上进行手工分割。使用 A.K. 软件对前列腺良恶性肿瘤总共 118 个纹理特征进行定量分析, 去除相关系数大于 0.9 的特征以消除重复冗余。用最大相关和最小冗余(mRMR)以及 LASSO 两种特征选择方法来 选择训练队列中最有用的预测特征,使用 LASSO 回归建立基于前列腺增强 MRI 肿瘤内基质和肿瘤内基质包含外周 组织的两个良恶性自动检测模型。通过受试者工作特征曲线(ROC)和 Delong 检验曲线分析和评价模型的性能。结果:测试组的肿瘤内基质组模型曲线下面积(AUC)为 0.819,肿瘤基质及外周组模型 AUC 为 0.865。当预测得分阈值为 0.5 时,肿瘤内基质组模型、肿瘤基质及外周组模型的灵敏度分别为 0.750 和 0.776,特异度分别为 0.875 和 0.912,准 确度为 0.823 和 0.862。对两组 ROC 曲线进行 Delong 检验,P = 0.0134。结论:基于磁共振增强图像的放射组学模型 结合 LASSO 算法自动检测前列腺癌,表现出较高的性能。前列腺肿瘤基质及外周组的性能显著优于肿瘤内基质组。

    Abstract:

    AbstractObjective Radiomics was used to extract high-throughput texture features from the enhanced magnetic resonance imaging (MRI) of prostate tumors, combined with least absolute shrinkage and selection operator (LASSO) regression algorithm for feature selection. The selected texture features were used to establish a prostate enhanced MRI classification model to automatically detect prostate cancer. Methods A total of 118 patients with prostate cancer who underwent enhanced 3.0T MRI scan were retrospectively analyzed, including 63 cases of prostate cancer and 55 cases of benign prostate tumors confirmed by pathology. The enhanced images were manually segmented on ITK-SNAP 3.6.0. A total of 118 texture features of benign and malignant prostate tumors were quantitatively analyzed by A.K. software, and features with correlation coefficients greater than 0.9 were removed to eliminate repetitive redundancy. Two feature selection methods, max-relevance and min-redundancy (mRMR) and LASSO were used to select the most useful predictive features in the training cohort. LASSO regression was used to establish two automatic detection models for benign and malignant lesions based on tumor stroma and tumor stroma containing peripheral tissues. The performance of the model was analyzed and evaluated by receiver operating characteristic (ROC) curve and Delong test curve. Results The area under curve (AUC) of the test group was 0.819 in the tumor stroma group, and the AUC of the tumor stroma and peripheral group was 0.865. When the threshold of prediction score was 0.5, the sensitivity, specificity and accuracy of the tumor stroma group model, thetumor stroma and peripheral group model were 0.750 and 0.776, 0.875 and 0.912, 0.823 and 0.862, respectively. Delong test was performed on the ROC curve of the two groups, P = 0.0134. Conclusion The radiomics model based on magnetic resonance enhanced image combined with LASSO algorithm shows high performance in automatically detecting prostate cancer. The performance of intratumoral stroma and peripheral group was significantly better than that of the intratumoral stroma group.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-08-25
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-05-24
  • 出版日期:
文章二维码
特别声明

近期有不法分子冒充我刊名义给作者打电话或发邮件,编造各种理由要求添加微信或QQ、伪造复制我刊编辑部公章发放假冒录用通知书等等各种方式试图骗取作者钱财。为强化编辑部工作规范,加强单位公章管理,维护作者的正当权益和财产利益, 我刊在此郑重声明:(1)编辑部与作者沟通方式为电话和邮件,在本刊唯一官方网站(http:/szzxyjhzz.szrch.com)“联系我们”下拉菜单,或者网站最下端信息栏可以查询),绝对不会要求作者添加微信或QQ。 (2)自2025年2月1日起,注销废除“深圳中西医结合杂志编辑部”电子公章;我刊稿件录用通知调整为加盖编辑部实体公章的纸质文件或其扫描件,录用稿件仅收取合理版面制作费和审稿费,收款单位为“深圳市第二人民医院”对公账户,其他加盖电子公章或涉及私人账户者均为伪造假冒。望广大作者提高警惕,谨防上当受骗。 《深圳中西医结合杂志》编辑部

关闭